
PYTHON TUTORIAL FOR BEGINNERS: LEARN IN 3 DAYS 

 

This tutorial helps you to get started with Python. It's a step by step practical guide to learn Python by examples. 

Python is an open source language and it is widely used as a high-level programming language for general-

purpose programming. It has gained high popularity in data science world. In the PyPL Popularity of 

Programming language index, Python scored second rank with a 14 percent share. In advanced analytics and 

predictive analytics market, it is ranked among top 3 programming languages for advanced analytics. 
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Python 2.7 vs 3.6 

 

Google yields thousands of articles on this topic. Some bloggers opposed and some in favor of 2.7. If you filter 

your search criteria and look for only recent articles (late 2016 onwards), you would see majority of bloggers 

are in favor of Python 3.6. See the following reasons to support Python 3.6. 

 

1. The official end date for the Python 2.7 is year 2020. Afterward there would be no support from community. 

It does not make any sense to learn 2.7 if you learn it today. 

 

2. Python 3.6 supports 95% of top 360 python packages and almost 100% of top packages for data science. 

 

What's new in Python 3.6 

 

It is cleaner and faster. It is a language for the future. It fixed major issues with versions of Python 2 series. 

Python 3 was first released in year 2008. It has been 9 years releasing robust versions of Python 3 series. 

 

Key Takeaway 

 

You should go for Python 3.6. In terms of learning Python, there are no major differences in Python 2.7 and 

3.6. It is not too difficult to move from Python 3 to Python 2 with a few adjustments. Your focus should go on 

learning Python as a language. 

 

Python for Data Science 

Python is widely used and very popular for a variety of software engineering tasks such as website development, 

cloud-architecture, back-end etc. It is equally popular in data science world. In advanced analytics world, there 

has been several debates on R vs. Python. There are some areas such as number of libraries for statistical analysis, 

where R wins over Python but Python is catching up very fast. With popularity of big data and data science, 

Python has become first programming language of data scientists. 

 

There are several reasons to learn Python. Some of them are as follows – 

 

1. Python runs well in automating various steps of a predictive model.  

2. Python has awesome robust libraries for machine learning, natural language processing, deep 

learning, big data and artificial Intelligence.  

3. Python wins over R when it comes to deploying machine learning models in production. 

4. It can be easily integrated with big data frameworks such as Spark and Hadoop. 

5. Python has a great online community support. 

Do you know these sites are developed in Python? 

 

1. YouTube 

2. Instagram 

3. Reddit 



4. Dropbox 

5. Disqus 

 

How to Install Python 

 

There are two ways to download and install Python 

 

1. Download Anaconda. It comes with Python software along with preinstalled popular libraries. 

2. Download Python from its official website. You have to manually install libraries. 

3.  

Recommended : Go for first option and download anaconda. It saves a lot of time in learning and coding 

Python 

Coding Environments 

 

Anaconda comes with two popular IDE : 

1. Jupyter (Ipython) Notebook 

2. Spyder 

Spyder. It is like RStudio for Python. It gives an environment wherein writing python code is user-friendly. If 

you are a SAS User, you can think of it as SAS Enterprise Guide / SAS Studio. It comes with a syntax editor 

where you can write programs. It has a console to check each and every line of code. Under the 'Variable 

explorer', you can access your created data files and function. I highly recommend Spyder! 

 

Spyder - Python Coding Environment 

Jupyter (Ipython) Notebook 

 

Jupyter is equivalent to markdown in R. It is useful when you need to present your work to others or when you 

need to create step by step project report as it can combine code, output, words, and graphics. 

 

https://www.continuum.io/downloads
https://www.python.org/downloads/
https://3.bp.blogspot.com/--7uGoD3tH2s/WSHT5tEN9CI/AAAAAAAAGQs/QAGri0KVnvcTVrKdbbFJ_XkNkY5kjfdlACLcB/s1600/Spyder.png


Spyder Shortcut Keys 

 

The following is a list of some useful spyder shortcut keys which makes you more productive. 

1. Press F5 to run the entire script 

2. Press F9 to run selection or line  

3. Press Ctrl + 1 to comment / uncomment 

4. Go to front of function and then press Ctrl + I to see documentation of the function 

5. Run %reset -f to clean workspace 

6. Ctrl + Left click on object to see source code  

7. Ctrl+Enter executes the current cell. 

8. Shift+Enter executes the current cell and advances the cursor to the next cell 

 

List of arithmetic operators with examples 

Arithmetic Operators Operation Example 

+ Addition 10 + 2 = 12 

– Subtraction 10 – 2 = 8 

* Multiplication 10 * 2 = 20 

/ Division 10 / 2 = 5.0 

% Modulus (Remainder) 10 % 3 = 1 

** Power 10 ** 2 = 100 

// Floor 17 // 3 = 5 

(x + (d-1)) // d Ceiling (17 +(3-1)) // 3 = 6 

 

Basic Programs 

 

Example 1 

 

#Basics 

x = 10 

y = 3 

print("10 divided by 3 is", x/y) 

print("remainder after 10 divided by 3 is", x%y) 

Result : 

10 divided by 3 is 3.33 

remainder after 10 divided by 3 is 1 

Example 2 

 

x = 100 

x > 80 and x <=95 

x > 35 or x < 60 



x > 80 and x <=95 

Out[45]: False 

x > 35 or x < 60 

Out[46]: True 

Comparison & Logical Operators Description Example 

> Greater than 5 > 3 returns True 

< Less than 5 < 3 returns False 

>= Greater than or equal to 5 >= 3 returns True 

<= Less than or equal to 5 <= 3 return False 

== Equal to 5 == 3 returns False 

!= Not equal to 5 != 3 returns True 

and Check both the conditions x > 18 and x <=35 

or If atleast one condition hold True x > 35 or x < 60 

not Opposite of Condition not(x>7) 

 

Assignment Operators 

 

It is used to assign a value to the declared variable. For e.g. x += 25 means x = x +25. 

 

x = 100 

y = 10 

x += y 

print(x) 

print(x) 

110 

In this case, x+=y implies x=x+y which is x = 100 + 10. 

 

Similarly, you can use x-=y, x*=y and x /=y 

 

Python Data Structure 

 

In every programming language, it is important to understand the data structures. Following are some data 

structures used in Python. 

 

1. List 

 



It is a sequence of multiple values. It allows us to store different types of data such as integer, float, string etc. 

See the examples of list below. First one is an integer list containing only integer. Second one is string list 

containing only string values. Third one is mixed list containing integer, string and float values. 

 

1. x = [1, 2, 3, 4, 5] 

2. y = [‘A’, ‘O’, ‘G’, ‘M’] 

3. z = [‘A’, 4, 5.1, ‘M’] 

Get List Item 

 

We can extract list item using Indexes. Index starts from 0 and end with (number of elements-1). 

 

x = [1, 2, 3, 4, 5] 

x[0] 

x[1] 

x[4] 

x[-1] 

x[-2] 

x[0] 

Out[68]: 1 

 

x[1] 

Out[69]: 2 

 

x[4] 

Out[70]: 5 

 

x[-1] 

Out[71]: 5 

 

x[-2] 

Out[72]: 4 

 

x[0] picks first element from list. Negative sign tells Python to search list item from right to left. x[-1] selects 

the last element from list. 



 

You can select multiple elements from a list using the following method 

 

x[:3] returns [1, 2, 3] 

 

2. Tuple 

 

A tuple is similar to a list in the sense that it is a sequence of elements. The difference between list and tuple are 

as follows - 

 

1. A tuple cannot be changed once created whereas list can be modified. 

2. A tuple is created by placing comma-separated values inside parentheses ( ). Whereas, list is 

created inside square brackets [ ] 

Examples 

 

K = (1,2,3) 

City = ('Delhi','Mumbai','Bangalore') 

Perform for loop on Tuple 

 

for i in City: 

    print(i) 

Delhi 

Mumbai 

Bangalore 

 
 

Functions 

 

Like print(), you can create your own custom function. It is also called user-defined functions. It helps you in 

automating the repetitive task and calling reusable code in easier way. 

 

Rules to define a function 

 

1. Function starts with def keyword followed by function name and ( ) 

2. Function body starts with a colon (:) and is indented 

3. The keyword return ends a function  and give value of previous expression. 

def sum_fun(a, b): 

    result = a + b 

    return result  

z = sum_fun(10, 15) 



Result : z = 25 

 

Suppose you want python to assume 0 as default value if no value is specified for parameter b. 

 

def sum_fun(a, b=0): 

    result = a + b 

    return result 

z = sum_fun(10) 

In the above function, b is set to be 0 if no value is provided for parameter b. It does not mean no other value 

than 0 can be set here. It can also be used as z = sum_fun(10, 15) 

 

Conditional Statements (if else) 

 

Conditional statements are commonly used in coding. It is IF ELSE statements. It can be read like : " if a 

condition holds true, then execute something. Else execute something else" 

 

Note : The if and else statements ends with a colon : 

 

Example 

 

k = 27 

if k%5 == 0: 

  print('Multiple of 5') 

else: 

  print('Not a Multiple of 5') 

Result : Not a Multiple of 5 

 

Popular python packages for Data Analysis & Visualization 

 

Some of the leading packages in Python along with equivalent libraries in R are as follows- 

 

1. pandas. For data manipulation and data wrangling. A collections of functions to understand and 

explore data. It is counterpart of dplyr and reshape2 packages in R. 

2. NumPy. For numerical computing. It's a package for efficient array computations. It allows us to 

do some operations on an entire column or table in one line. It is roughly approximate to Rcpp package 

in R which eliminates the limitation of slow speed in R. 

3. Scipy.  For mathematical and scientific functions such as integration, interpolation, signal 

processing, linear algebra, statistics, etc. It is built on Numpy. 

4. Scikit-learn. A collection of machine learning algorithms. It is built on Numpy and Scipy. It can 

perform all the techniques that can be done in R using glm, knn, randomForest, rpart, 

e1071 packages. 

5. Matplotlib. For data visualization. It's a leading package for graphics in Python. It is equivalent 

to ggplot2 package in R. 

6. Statsmodels. For statistical and predictive modeling. It includes various functions to explore 

data and generate descriptive and predictive analytics. It allows users to run descriptive statistics, 

methods to impute missing values, statistical tests and take table output to HTML format. 

7. pandasql.  It allows SQL users to write SQL queries in Python. It is very helpful for people who 

loves writing SQL queries to manipulate data. It is equivalent to sqldf package in R. 



Maximum of the above packages are already preinstalled in Spyder. 

 

Comparison of Python and R Packages by Data Mining Task 

Task Python Package R Package 

IDE Rodeo / Spyder Rstudio 

Data Manipulation pandas dplyr and reshape2 

Machine Learning Scikit-learn glm, knn, randomForest, rpart, e1071 

Data Visualization ggplot + seaborn + bokeh ggplot2 

Character Functions Built-In Functions stringr 

Reproducibility Jupyter Knitr 

SQL Queries pandasql sqldf 

Working with Dates datetime lubridate 

Web Scraping beautifulsoup rvest 

 

Popular Python Commands 

 

The commands below would help you to install and update new and existing packages. Let's say, you want to 

install / uninstall pandas package. 

 

Install Package 

!pip install pandas 

 

Uninstall Package 

!pip uninstall pandas 

 

Show Information about Installed Package 

!pip show pandas 

 

List of Installed Packages 

!pip list 

 

Upgrade a package 

!pip install --upgrade pandas 

 

How to import a package 

 

There are multiple ways to import a package in Python. It is important to understand the difference between 

these styles. 

 

1. import pandas as pd 

It imports the package pandas under the alias pd. A function DataFrame in package pandas is then submitted 

with pd.DataFrame. 

 

2. import pandas 



It imports the package without using alias but here the function DataFrame is submitted with full package 

name pandas.DataFrame 

 

3. from pandas import *  

It imports the whole package and the function DataFrame is executed simply by typing DataFrame. It 

sometimes creates confusion when same function name exists in more than one package. 

Pandas Data Structures : Series and DataFrame 

 

In pandas package, there are two data structures - series and dataframe. These structures are explained below in 

detail - 

1. Series is a one-dimensional array. You can access individual elements of a series using position. 

It's similar to vector in R. 

In the example below, we are generating 5 random values. 

import pandas as pd 

s1 = pd.Series(np.random.randn(5)) 

s1 

0   -2.412015 

1   -0.451752 

2    1.174207 

3    0.766348 

4   -0.361815 

dtype: float64 

 

Extract first and second value 

 

You can get a particular element of a series using index value. See the examples below - 

s1[0] 

-2.412015 

s1[1] 

-0.451752 

s1[:3] 

0   -2.412015 



1   -0.451752 

2    1.174207 

 
 

2. DataFrame 

 

It is equivalent to data.frame in R. It is a 2-dimensional data structure that can store data of different data types 

such as characters, integers, floating point values, factors. Those who are well-conversant with MS Excel, they 

can think of data frame as Excel Spreadsheet. 

 

Comparison of Data Type in Python and Pandas 

 

The following table shows how Python and pandas package stores data. 

Data Type Pandas Standard Python 

For character variable object string 

For categorical variable category - 

For Numeric variable without decimals int64 int 

Numeric characters with decimals float64 float 

For date time variables datetime64 - 

 

Important Pandas Functions 

 

The table below shows comparison of pandas functions with R functions for various data wrangling and 

manipulation tasks. It would help you to memorise pandas functions. It's a very handy information for 

programmers who are new to Python. It includes solutions for most of the frequently used data exploration 

tasks. 

 

Functions R Python (pandas package) 

Installing a package install.packages('name') !pip install name 

Loading a package library(name) import name as other_name 

Checking working directory getwd() import os 

os.getcwd() 

Setting working directory setwd() os.chdir() 

List files in a directory dir() os.listdir() 

Remove an object rm('name') del object 

Select Variables select(df, x1, x2) df[['x1', 'x2']] 

Drop Variables select(df, -(x1:x2)) df.drop(['x1', 'x2'], axis = 1) 

Filter Data filter(df, x1 >= 100) df.query('x1 >= 100') 

Structure of a DataFrame str(df) df.info() 



Summarize dataframe summary(df) df.describe() 

Get row names of dataframe "df" rownames(df) df.index 

Get column names colnames(df) df.columns 

View Top N rows head(df,N) df.head(N) 

View Bottom N rows tail(df,N) df.tail(N) 

Get dimension of data frame dim(df) df.shape 

Get number of rows nrow(df) df.shape[0] 

Get number of columns ncol(df) df.shape[1] 

Length of data frame length(df) len(df) 

Get random 3 rows from dataframe sample_n(df, 3) df.sample(n=3) 

Get random 10% rows sample_frac(df, 0.1) df.sample(frac=0.1) 

Check Missing Values is.na(df$x) pd.isnull(df.x) 

Sorting arrange(df, x1, x2) df.sort_values(['x1', 'x2']) 

Rename Variables rename(df, newvar = x1) df.rename(columns={'x1': 'newvar'}) 

 

 

Data Manipulation with pandas - Examples 

 

1. Import Required Packages 

 

You can import required packages using import statement. In the syntax below, we are asking Python to import 

numpy and pandas package. The 'as' is used to alias package name. 

 

import numpy as np 

import pandas as pd 

 

2. Build DataFrame 

 

We can build dataframe using DataFrame() function of pandas package. 

 

mydata = {'productcode': ['AA', 'AA', 'AA', 'BB', 'BB', 'BB'], 

        'sales': [1010, 1025.2, 1404.2, 1251.7, 1160, 1604.8], 

        'cost' : [1020, 1625.2, 1204, 1003.7, 1020, 1124]} 

df = pd.DataFrame(mydata) 

 In this dataframe, we have three variables - productcode, sales, cost. 



 

Sample DataFrame 

 

To import data from CSV file 

 

You can use read_csv() function from pandas package to get data into python from CSV file. 

mydata= pd.read_csv("C:\\Users\\Deepanshu\\Documents\\file1.csv") 

Make sure you use double backslash when specifying path of CSV file. Alternatively, you can use forward 

slash to mention file path inside read_csv() function. 

 

Detailed Tutorial : Import Data in Python 

 

3. To see number of rows and columns 

 

You can run the command below to find out number of rows and columns. 

 

df.shape 

 Result : (6, 3). It means 6 rows and 3 columns. 

 

4. To view first 3 rows 

 

The df.head(N) function can be used to check out first some N rows. 

 

df.head(3) 

     cost productcode   sales 

0  1020.0          AA  1010.0 

1  1625.2          AA  1025.2 

2  1204.0          AA  1404.2 

 

5. Select or Drop Variables 

http://www.listendata.com/2017/02/import-data-in-python.html
https://2.bp.blogspot.com/-pxZ3HvzJ3tg/WR2kIlBTpAI/AAAAAAAAGPY/3l7Pay8rhpQ5ewGXeLDDaGdwqvzccugsQCLcB/s1600/df_python.png


 

To keep a single variable, you can write in any of the following three methods - 

 

df.productcode 

df["productcode"] 

df.loc[: , "productcode"] 

To select variable by column position, you can use df.iloc function. In the example below, we are selecting 

second column. Column Index starts from 0. Hence, 1 refers to second column. 

 

df.iloc[: , 1] 

We can keep multiple variables by specifying desired variables inside [ ]. Also, we can make use of df.loc() 

function. 

 

df[["productcode", "cost"]] 

df.loc[ : , ["productcode", "cost"]] 

 

Drop Variable 

 

We can remove variables by using df.drop() function. See the example below - 

 

df2 = df.drop(['sales'], axis = 1) 

 

6. To summarize data frame  

 

To summarize or explore data, you can submit the command below.  

 

df.describe() 

              cost       sales 

count     6.000000     6.00000 

mean   1166.150000  1242.65000 

std     237.926793   230.46669 

min    1003.700000  1010.00000 

25%    1020.000000  1058.90000 

50%    1072.000000  1205.85000 

75%    1184.000000  1366.07500 

max    1625.200000  1604.80000 



 

To summarise all the character variables, you can use the following script. 

 

df.describe(include=['O']) 

Similarly, you can use df.describe(include=['float64']) to view summary of all the numeric variables with 

decimals. 

 

To select only a particular variable, you can write the following code - 

 

df.productcode.describe() 

OR 

df["productcode"].describe() 

count      6 

unique     2 

top       BB 

freq       3 

Name: productcode, dtype: object 

 

7. To calculate summary statistics 

 

We can manually find out summary statistics such as count, mean, median by using commands below 

 

df.sales.mean() 

df.sales.median() 

df.sales.count() 

df.sales.min() 

df.sales.max() 

 

8. Filter Data 

 

Suppose you are asked to apply condition - productcode is equal to "AA" and sales greater than or equal to 

1250. 

df1 = df[(df.productcode == "AA") & (df.sales >= 1250)] 

It can also be written like : 

 

df1 = df.query('(productcode == "AA") & (sales >= 1250)') 

In the second query, we do not need to specify DataFrame along with variable name. 

9. Sort Data 

 



In the code below, we are arrange data in ascending order by sales. 

 

df.sort_values(['sales']) 

 

10.  Group By : Summary by Grouping Variable 

 

Like SQL GROUP BY, you want to summarize continuous variable by classification variable. In this case, we 

are calculating average sale and cost by product code. 

 

df.groupby(df.productcode).mean() 

                    cost        sales 

productcode                           

AA           1283.066667  1146.466667 

BB           1049.233333  1338.833333 

Instead of summarising for multiple variable, you can run it for a single variable i.e. sales. Submit the following 

script. 

df["sales"].groupby(df.productcode).mean() 

 

11. Define Categorical Variable 

 

Let's create a classification variable - id which contains only 3 unique values - 1/2/3. 

 

df0 = pd.DataFrame({'id': [1, 1, 2, 3, 1, 2, 2]}) 

Let's define as a categorical variable. 

We can use astype() function to make id as a categorical variable. 

 

df0.id = df0["id"].astype('category') 

Summarize this classification variable to check descriptive statistics. 

 

df0.describe() 

       id 

count    7 

unique   3 

top      2 

freq     3 



 

Frequency Distribution 

 

You can calculate frequency distribution of a categorical variable. It is one of the method to explore a 

categorical variable. 

 

df['productcode'].value_counts() 

BB    3 

AA    3 

 

12. Generate Histogram 

 

Histogram is one of the method to check distribution of a continuous variable. In the figure shown below, there 

are two values for variable 'sales' in range 1000-1100. In the remaining intervals, there is only a single value. In 

this case, there are only 5 values. If you have a large dataset, you can plot histogram to identify outliers in a 

continuous variable. 

df['sales'].hist() 

 

Histogram 

 
 

13. BoxPlot 

 

Boxplot is a method to visualize continuous or numeric variable. It shows minimum, Q1, Q2, Q3, IQR, 

maximum value in a single graph. 

df.boxplot(column='sales') 

https://3.bp.blogspot.com/-ioygQfX8HWo/WR3gJ--Xc0I/AAAAAAAAGPo/TQlc0mdVzqwBrc1xhtIcgiD-1C5pGoUXACLcB/s1600/Histogram_Python.png


 

BoxPlot 

 

Data Science using Python - Examples 

 

In this section, we cover how to perform data mining and machine learning algorithms with Python. sklearn is 

the most frequently used library for running data mining and machine learning algorithms. We will also cover 

statsmodels library for regression techniques. statsmodels library generates formattable output which can be 

used further in project report and presentation. 

 

1. Install the required libraries 

 

Import the following libraries before reading or exploring data 

 

#Import required libraries 

import pandas as pd 

import statsmodels.api as sm 

import numpy as np 

 

2. Download and import data into Python 

 

With the use of python library, we can easily get data from web into python. 

 

# Read data from web 

df = pd.read_csv("https://stats.idre.ucla.edu/stat/data/binary.csv") 

Variables Type Description 
gre Continuous Graduate Record Exam score 
gpa Continuous Grade Point Average 
rank Categorical Prestige of the undergraduate institution 
admit Binary Admission in graduate school 

 

The binary variable admit is a target variable. 

 

3. Explore Data 

 

https://1.bp.blogspot.com/-hfnDd5HO9ak/WR3kB-0f2tI/AAAAAAAAGPs/MpNFwZBF0rAaaVy2buVKBaJep4Rg8zlNACLcB/s1600/boxplot.png


Let's explore data. We'll answer the following questions - 

 

1. How many rows and columns in the data file? 

2. What are the distribution of variables? 

3. Check if any outlier(s) 

4. If outlier(s), treat them 

5. Check if any missing value(s) 

6. Impute Missing values (if any) 

# See no. of rows and columns 

df.shape 

Result : 400 rows and 4 columns 

 

In the code below, we rename the variable rank to 'position' as rank is already a function in python. 

 

# rename rank column 

df = df.rename(columns={'rank': 'position'})  

Summarize and plot all the columns. 

 

# Summarize 

df.describe() 

# plot all of the columns 

df.hist() 

Categorical variable Analysis 

 

It is important to check the frequency distribution of categorical variable. It helps to answer the question 

whether data is skewed. 

 

# Summarize 

df.position.value_counts(ascending=True) 

1     61 

4     67 

3    121 

2    151 

 

Generating Crosstab  
 

By looking at cross tabulation report, we can check whether we have enough number of events against each 

unique values of categorical variable. 

 

pd.crosstab(df['admit'], df['position']) 



position   1   2   3   4 

admit                    

0         28  97  93  55 

1         33  54  28  12 

 

Number of Missing Values 

 

We can write a simple loop to figure out the number of blank values in all variables in a dataset. 

 

for i in list(df.columns) : 

    k = sum(pd.isnull(df[i])) 

    print(i, k) 

In this case, there are no missing values in the dataset. 

 

4. Logistic Regression Model 

 

Logistic Regression is a special type of regression where target variable is categorical in nature and independent 

variables be discrete or continuous. In this post, we will demonstrate only binary logistic regression which 

takes only binary values in target variable. Unlike linear regression, logistic regression model returns 

probability of target variable.It assumes binomial distribution of dependent variable. In other words, it belongs 

to binomial family. 

 

In python, we can write R-style model formula y ~ x1 + x2 + x3 using  patsy and statsmodels libraries. In the 

formula, we need to define variable 'position' as a categorical variable by mentioning it inside capital C(). You 

can also define reference category using reference= option. 

 

#Reference Category 

from patsy import dmatrices, Treatment 

y, X = dmatrices('admit ~ gre + gpa + C(position, Treatment(reference=4))', df, return_type = 'dataframe') 

It returns two datasets - X and y. The dataset 'y' contains variable admit which is a target variable. The other 

dataset 'X' contains Intercept (constant value), dummy variables for Treatment, gre and gpa. Since 4 is set as a 

reference category, it will be 0 against all the three dummy variables. See sample below - 

P  P_1 P_2 P_3 

3  0 0 1 

3  0 0 1 

1  1 0 0 

4  0 0 0 



4  0 0 0 

2  0 1 0 

 

 

Split Data into two parts 

 

80% of data goes to training dataset which is used for building model and 20% goes to test dataset which would 

be used for validating the model. 

 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) 

 

Build Logistic Regression Model 

 

By default, the regression without formula style does not include intercept. To include it, we already have 

added intercept in X_train which would be used as a predictor. 

 

#Fit Logit model 

logit = sm.Logit(y_train, X_train) 

result = logit.fit() 

 

#Summary of Logistic regression model 

result.summary() 

result.params 

                          Logit Regression Results                            

============================================================================== 

Dep. Variable:                  admit   No. Observations:                  320 

Model:                          Logit   Df Residuals:                      315 

Method:                           MLE   Df Model:                            4 

Date:                Sat, 20 May 2017   Pseudo R-squ.:                 0.03399 

Time:                        19:57:24   Log-Likelihood:                -193.49 

converged:                       True   LL-Null:                       -200.30 

                                        LLR p-value:                  0.008627 

======================================================================================= 

                      coef    std err          z       P|z|      [95.0% Conf. Int.] 



--------------------------------------------------------------------------------------- 

C(position)[T.1]     1.4933      0.440      3.392      0.001         0.630     2.356 

C(position)[T.2]     0.6771      0.373      1.813      0.070        -0.055     1.409 

C(position)[T.3]     0.1071      0.410      0.261      0.794        -0.696     0.910 

gre                  0.0005      0.001      0.442      0.659        -0.002     0.003 

gpa                  0.4613      0.214     -2.152      0.031        -0.881    -0.041 

====================================================================================== 

 

Confusion Matrix and Odd Ratio 

 

Odd ratio is exponential value of parameter estimates. 

 

#Confusion Matrix 

result.pred_table() 

#Odd Ratio 

np.exp(result.params) 

 
 

Prediction on Test Data 

In this step, we take estimates of logit model which was built on training data and then later apply it into test 

data. 

#prediction on test data 

y_pred = result.predict(X_test) 

 

Calculate Area under Curve (ROC) 

 

# AUC on test data 

false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_pred) 

auc(false_positive_rate, true_positive_rate) 

Result : AUC = 0.6763 

 

Calculate Accuracy Score 

 

accuracy_score([ 1 if p > 0.5 else 0 for p in y_pred ], y_test) 

 

Decision Tree Model 



 

Decision trees can have a target variable continuous or categorical. When it is continuous, it is called regression 

tree. And when it is categorical, it is called classification tree. It selects a variable at each step that best splits the 

set of values. There are several algorithms to find best split. Some of them are Gini, Entropy, C4.5, Chi-Square. 

There are several advantages of decision tree. It is simple to use and easy to understand. It requires a very few 

data preparation steps. It can handle mixed data - both categorical and continuous variables. In terms of speed, it 

is a very fast algorithm. 

 

 

#Drop Intercept from predictors for tree algorithms 

X_train = X_train.drop(['Intercept'], axis = 1) 

X_test = X_test.drop(['Intercept'], axis = 1) 

 

#Decision Tree 

from sklearn.tree import DecisionTreeClassifier 

model_tree = DecisionTreeClassifier(max_depth=7) 

 

#Fit the model: 

model_tree.fit(X_train,y_train) 

 

#Make predictions on test set 

predictions_tree = model_tree.predict_proba(X_test) 

   

#AUC 

false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, 
predictions_tree[:,1]) 

auc(false_positive_rate, true_positive_rate) 

Result : AUC = 0.664 

 

Important Note 

 



Feature engineering plays an important role in building predictive models. In the above case, we have not 

performed variable selection. We can also select best parameters by using grid search fine tuning technique. 

 

Random Forest Model 

 

Decision Tree has limitation of overfitting which implies it does not generalize pattern. It is very sensitive to a 

small change in training data. To overcome this problem, random forest comes into picture. It grows a large 

number of trees on randomised data. It selects random number of variables to grow each tree. It is more robust 

algorithm than decision tree. It is one of the most popular machine learning algorithm. It is commonly used in 

data science competitions. It is always ranked in top 5 algorithms. It has become a part of every data science 

toolkit. 

 

 

#Random Forest 

from sklearn.ensemble import RandomForestClassifier 

model_rf = RandomForestClassifier(n_estimators=100, max_depth=7) 

 

#Fit the model: 

target = y_train['admit'] 

model_rf.fit(X_train,target) 

 

#Make predictions on test set 

predictions_rf = model_rf.predict_proba(X_test) 

 

#AUC 

false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, 
predictions_rf[:,1]) 

auc(false_positive_rate, true_positive_rate) 

 

#Variable Importance 

importances = pd.Series(model_rf.feature_importances_, 
index=X_train.columns).sort_values(ascending=False) 



print(importances) 

importances.plot.bar() 

 

Result : AUC = 0.6974 

 

Grid Search - Hyper Parameters Tuning 

 

The sklearn library makes hyper-parameters tuning very easy. It is a strategy to select the best parameters for an 

algorithm. In scikit-learn they are passed as arguments to the constructor of the estimator classes. For example, 

max_features in randomforest. alpha for lasso. 

 

 

from sklearn.model_selection import GridSearchCV 

rf = RandomForestClassifier() 

target = y_train['admit'] 

 

param_grid = {  

    'n_estimators': [100, 200, 300], 

    'max_features': ['sqrt', 3, 4] 

} 

 

CV_rfc = GridSearchCV(estimator=rf , param_grid=param_grid, cv= 5, scoring='roc_auc') 

CV_rfc.fit(X_train,target) 

 

#Parameters with Scores 

CV_rfc.grid_scores_ 

 

#Best Parameters 

CV_rfc.best_params_ 



CV_rfc.best_estimator_ 

 

#Make predictions on test set 

predictions_rf = CV_rfc.predict_proba(X_test) 

 

#AUC 

false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, 
predictions_rf[:,1]) 

auc(false_positive_rate, true_positive_rate) 

 

Cross Validation 

 

# Cross Validation 

from sklearn.linear_model import LogisticRegression 

from sklearn.model_selection import cross_val_predict,cross_val_score 

target = y['admit'] 

prediction_logit = cross_val_predict(LogisticRegression(), X, target, cv=10, method='predict_proba') 

#AUC 

cross_val_score(LogisticRegression(fit_intercept = False), X, target, cv=10, scoring='roc_auc') 

 

Data Mining : PreProcessing Steps 

 

1.  The machine learning package sklearn requires all categorical variables in numeric form. Hence, we need to 

convert all character/categorical variables to be numeric. This can be accomplished using the following script. 

In sklearn,  there is already a function for this step. 

 

 

from sklearn.preprocessing import LabelEncoder 

def ConverttoNumeric(df): 

    cols = list(df.select_dtypes(include=['category','object'])) 

    le = LabelEncoder() 

    for i in cols: 

        try: 



            df[i] = le.fit_transform(df[i]) 

        except: 

            print('Error in Variable :'+i) 

    return df 

 

ConverttoNumeric(mydf) 

 

Encoding 

 

2. Impute Missing Values 

 

Imputing missing values is an important step of predictive modeling. In many algorithms, if missing values are 

not filled, it removes complete row. If data contains a lot of missing values, it can lead to huge data loss. There 

are multiple ways to impute missing values. Some of the common techniques - to replace missing value with 

mean/median/zero. It makes sense to replace missing value with 0 when 0 signifies meaningful. For example, 

whether customer holds a credit card product. 

# fill missing values with 0 

df['var1'] = df['var1'].fillna(0) 

# fill missing values with mean 

df['var1'] = df['var1'].fillna(df['var1'].mean()) 

 

3. Outlier Treatment 

 

There are many ways to handle or treat outliers (or extreme values). Some of the methods are as follows - 

 

 

1. Cap extreme values at 95th / 99th percentile depending on distribution 

2. Apply log transformation of variables. See below the implementation of log transformation in 

Python. 

 

 

import numpy as np 

df['var1'] = np.log(df['var1']) 

https://4.bp.blogspot.com/-Il5164XIJAg/WSBAxiCW9mI/AAAAAAAAGQQ/UlW0s40IeSoGsvmPDgUpiwRpuHBqTm6cgCLcB/s1600/encode.png


Next Steps 

Practice, practice and practice. Download free public data sets from Kaggle / UCLA websites and try to play 

around with data and generate insights from it with pandas package and build statistical models using sklearn 

package. I hope you would find this tutorial helpful. I tried to cover all the important topics which beginner 

must know about Python. Once completion of this tutorial, you can flaunt you know how to program it in 

Python and you can implement machine learning algorithms using sklearn package. 
 


